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JEL Classifications C5-K32-Q51-R21-R32-R38-R58

Keywords Hedonic analysis - Housing value - Land planning - Public planning - Spatial
econometrics - Urban externalities - Wireless tower impacts

><I Ermanno Affuso
eaffuso @southalabama.edu

J. Reid Cummings
cummings @southalabama.edu

Huubinh Le
hble@southalabama.edu

Department of Economics and Finance, Mitchell College of Business, University of South
Alabama, 5811 USA South Drive, Room 314, Mobile, Alabama 36688, USA

Department of Economics and Finance, Mitchell College of Business, University of South
Alabama, 5811 USA South Drive, Room 126, Mobile, Alabama 36688, USA

Department of Economics and Finance, Mitchell College of Business, University of South
Alabama, 5811 USA South Drive, Room 312, Mobile, Alabama 36688, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11146-017-9600-9&domain=pdf
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In less than 20 years, the number of wireless devices in use' in the United States
increased 1045%, growing from 340,213 in 1985 to over 355 million in 2014 (CTIA
2015). A growing number of Americans now rely solely on their wireless phones for
communication. As of the end of 2014, the Centers for Disease Control and Preven-
tion’s National Center for Health Statistics reports that 44% of American households no
longer subscribe to landline telephone service; they predict that by the end of 2015, a
majority will have severed the cord (Centers for Disease Control and Prevention 2015).
U.S. wireless device numbers are truly staggering: 2014 usage comprised 2.45 trillion
voice minutes, 4.06 trillion megabytes of data, 1.92 trillion text messages, and 151.99
billion multimedia messages (CTIA 2015). Incredibly, even on the heels of a doubling
of wireless data usage from 2012 to 2013, analysts expect data use to surge, growing by
more than 650% by 2018 (Cisco 2013). In 2012, wireless industry employment topped
3.8 million people—2.6% of the U.S. workforce (Entner 2012). Analysts predict the
industry will create 1.2 million new jobs by 2017 (Pearce et al. 2013). U.S. wireless
carriers’ capital investment exceeded $33 billion in 2013—a record annual high—and
wireless industry experts project an additional $260 billion in new capital investment
over the next 10 years (CTIA 2015), adding $2.6 trillion to U.S. gross domestic product
(Summers 2010). Perhaps the most surprising, yet at the same time most impressive
statistic is that by comparison, the total value of the U.S. wireless industry—currently
$196 billion in 2012—exceeds that of agriculture, hotels and lodging, and air trans-
portation (Entner 2012).

Without question, there are many societal benefits offered by the last two decades’
myriad advances in wireless technologies. Ease of use and convenience, lower equip-
ment pricing, increasingly competitive rate plans, surges in wireless industry employ-
ment, considerable economic multiplier effects from large-scale wireless industry
capital investment, and significant realized and projected annual contributions to
GDP all work to make the U.S. wireless industry an ever-increasing, important part
of our daily lives and our national economy. Yet to date, a largely overlooked societal
cost is the potential negative impact on residential property values caused by the
exponential proliferation of the number of cell sites® necessary to support the wireless
industry’s rapid growth. In 1985, there were only 900 cell sites in the U.S., but by the
end of 2014, the number had increased by 22,778% (CTIA 2015). Of the more than
298,000 cell sites in the U.S., nearly 70% are located on tower structures (Airwave
Management, LLC 2013). Amidst intense competition to meet seemingly unceasing
demand, providers work continually to improve their wireless service coverage. As
they do so, it is logical to expect construction of an increasing number of new wireless
towers, located closer and closer together in many urban and suburban areas. As this
happens, it is also logical to expect an increasing number of homeowners to question if,
and to what extent proximity to a wireless tower affects home values. Those concerned
with such questions might also hope that public policy makers will begin asking the
same questions, and more importantly, consider the ramifications of the answers as they
manage the increasing pressures placed on wireless tower regulatory planning and
approval processes.

! Wireless devices include special feature phones, smartphones, and tablets.
2 CTIA defines a cell site as the location of wireless antenna and network communications equipment
necessary to provide wireless service in a geographic area (CTIA 2015).
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Considering the expected future increases in wireless device users and the cell sites
supporting them, this is a critically important question for our time. However, only a
few researchers have examined this issue, all yielding somewhat mixed results. In all,
the extant literature includes six relevant studies. The first is perceptions-based, offering
residents’ opinions of how tower proximity influences property values (Bond and
Beamish 2005). The second combines a similar perceptions-based component with
an hedonic model to estimate sales price impacts (Bond and Wang 2005). The
remaining four studies take a strictly empirical approach using hedonic modeling
estimations and different types of spatial analysis techniques (Bond 2007a, b;
Filippova and Rehm 2011; Locke and Blomquist 2016). Unfortunately, each study
suffers from flaws of one sort or another—time invariant issues, inaccurate spatial
modeling techniques, or other troublesome variable misspecifications. In essence, the
results of these studies are either inconclusive or show only minimal negative price
effects due to wireless tower proximity.

In our study though, we use a robust approach for gauging home values relative
to tower proximity. Similar to others, our study includes hedonic modeling to
capture distinctive property characteristics, yet it is distinctly different from others
in two important respects. By performing the analysis within varying radii bands
based on quartiles of the distance from the closest wireless tower, we are able to
detect potential marginal price gradients of each property across the banded space.
More importantly, by conducting a series of robust spatial econometric tests, we
are able to identify and use the most unbiased, efficient spatial model that is best
suited for the inferential analysis of our research question. The results underscore
our concerns that previous studies may potentially suffer from bias due to their
failures to address spatial correlation issues typical in hedonic model studies. Two
significant reasons contribute to our apprehensions. The first is that Ordinary
Least Squares (OLS) estimations are biased and inefficient in the presence of
spatial correlations of dependent variables and residuals. The second is that by not
accounting for spatial autocorrelation, it is unlikely any hedonic model can
correctly disentangle either direct and/or indirect effects of (dis)amenities on
housing prices. Research shows the latter is particularly useful when assessing
the impact of corrective policy solutions subsequent to market failures (LeSage
and Pace 2009). This is important because our research poses potentially signif-
icant policy implications, all of which we believe will most likely, yet for
substantially different reasons, be of keen interest to governmental and planning
officials, wireless tower operators and service providers, neighborhood activist
groups, and private property rights’ advocates.

In the second section of our paper, we discuss the relevant literature. In the third
section, we delineate our data and define our variables. In the fourth section, we
develop our hypotheses and methodology. In the fifth section, we present our empirical
results, and the final section concludes.

Literature Review

McDonough (2003) states “...proximity to a wireless tower needs to be considered as a
negative amenity that may reduce property valuation” (McDonough 2003, p. 29).
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Despite this recognition and the ongoing rapid expansion of the wireless industry,
research examining the relationship between wireless tower proximity and home values
remains quite limited. Two early studies commissioned by a major wireless service
provider look at potential health and visual impacts that wireless towers® may have on
property values. Bond and Beamish (2005) report that although the studies’ results
remain secretive, their private review of the results confirms no statistically significant
relationships exist. They note, however, that because the studies involve limited sales
data, and the underwriter is also a service provider, the question of biased results is
potentially concerning.

Some researchers tackle the question using perceptual studies. Bond and Beamish
(2005) survey residents in ten Christchurch, New Zealand suburbs—half being study
areas (residents living within 300 m of a tower) and half being a control group
(residents living more than 1 km from a tower). The authors aim to gauge residents’
perceptions about whether and to what extent wireless tower proximity influences
property values. Not surprisingly, those living far from a tower express less concern
than those living close to one. Distance from a tower largely drove respondents’
answers, but in sum, the authors find expectations of more than a 20% price reduction
for properties within close tower proximity.

Bond and Wang (2005) combine a perceptual study with an empirical investigation.
The perceptual component outcomes are quite similar to those of Bond and Beamish
(2005). Their survey’s respondents believe that proximity to a wireless tower causes
property values to decrease from 10% to more than 20%. The empirical portion of their
study includes approximately 4000 home sales spanning from 1986 to 2002 in four
different suburbs. The authors’ hedonic model includes a dummy variable that captures
whether sales occur before or after tower construction. A potential shortcoming of this
study could be the authors’ choice to measure distances from cell towers not to
individual homes, but rather, to a particular street within the study area. Their hedonic
models do not account for potential spatial dependence of price and error structure.
Their estimations produce mixed results, with negative price effects in two suburbs, a
positive price effect in a third, and no significance in the fourth.

Bond (2007a) offers a methodological improvement by calculating exact distances
between towers and included properties. Using a dummy variable to capture if a sale
occurs before or after tower construction, the author also accounts for sales price time-
effects by deflating sales prices to the consumer price index, and includes a time of sale
variable in the estimations. Using four of the same suburbs from the earlier work of
Bond and Wang (2005), the results show sales price reductions of approximately 15%
after tower construction, diminishing as distance from a tower increases. Past 300 m,
the negative price effect is negligible. Unfortunately, the results lack consistency,
producing a positive price effect in one of the four neighborhoods. This may suggest
a possible model misspecification error, or the effect of some other unobservable
externality.

Bond (2007b) conducts a similar study using Orange County, Florida wireless tower
and sales transaction data. Empirical results indicate a tower’s presence yields a
statistically significant and negative impact on price. Even so, the author notes the
negative price effects are of little consequence.

3 In their paper, the authors refer to wireless towers as cellular phone base stations.
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Filippova and Rehm (2011) investigate tower proximity impacts on property
values using property sales data from Auckland, New Zealand. Their final
geocoded dataset includes approximately 56,000 sales observations dating from
2005 to 2007, and 521 tower locations. Highly critical of earlier studies’ meth-
odologies, the authors emphasize they took care to “ensure that integration dates
of nearest cell towers did not occur after the date of sale” (Filippova and Rehm
2011, p. 250). To account for negative impacts that non-residential areas might
have on residential area property values (for example, see Bowes and IThlanfeldt
2001; Grass 1992; Nelson and McCleskey 1990; Mahan et al. 2000), the authors
divide their sample into two parts. The first group includes only the 49 towers
within residential areas, and all properties within a 500-m radius of existing
towers. They also include a dummy variable for tower type, which they describe
as lamppost, single monopole, or armed monopole (one with a triangular structure
at the top). Generally, their residential area estimations produce no statistical
significance. Not surprising, given the extremely close proximity to a tower, the
lone exception is for houses located within 100 m of an armed monopole, which
suffer a 10.7% price reduction. Estimations for the second group, which includes
all towers in the entire study area, yield results similar to those in the first group.
As such, the authors conclude that with the exception of a small number of armed
monopole towers, wireless tower proximity does not negatively affect sales price.

More recently, Locke and Blomquist (2016) explore the question at hand.
They use housing sales (including repeat sales) from 2000 to 2012 occurring in
Louisville and Elizabethtown, Kentucky, geocoding each sold property to the
street address listed in the sales data. They develop a number of tower location-
specific characteristics such as census tract, and distances to major roads,
railroads, and military bases. The authors state that, “Holding all else constant,
the owner of a communication antenna will attempt to locate the antenna in an
area that minimizes the antenna owner’s cost” (Locke and Blomquist 2016, p.
134). At first glance, this statement seems obvious, if for no other reason than it
makes good business sense. Further thought, however, draws question to the
authors’ additional statement that, “It appears that communication antennas are in
fact located in areas where properties are less valuable” (Locke and Blomquist
2016, p. 134). One might infer from this that carriers strive mainly to construct
towers in low-value areas simply to save money. Yet because intuition suggests
carriers increase earnings by increasing subscribers, locating towers only in low-
valued areas, and hence, providing service coverage only to presumably low-
income people does not make good business sense. It seems, therefore, that the
authors miss the other side of the coin, which is, in fact, not all towers appear in
areas where properties are less valuable, but rather, owners will also construct
towers in areas where properties are more valuable in order to fill holes in their
service coverage. Indeed, tower location may be a source of endogeneity. How-
ever, income, population density, and other unobserved neighborhood character-
istics could be instrumental for both homeowners’ property and wireless carriers’
tower location choices.

Inclusion of spatial considerations in addition to hedonic characteristics in their
modeling is a good choice, as it adds robustness to their results. However, as with
previous studies, across all model estimations, the authors do not account for potential
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spatial correlation of price and error structure, finding only slight degrees of price
reductions due to tower proximity, again, diminishing with distance.

Data

To investigate if and to what extent wireless tower proximity impacts home values we
combine two datasets. The first includes 23,309 residential property sales occurring in
Mobile County, Alabama between 1999 and 2015.* We deflate housing prices to a base
year of 2014 using the U.S. Bureau of Labor Statistics’ Housing Consumer Price Index.
The second includes 149 wireless towers located in Mobile County, Alabama.’ In
addition to certain property characteristics, we also include key census tract-level
demographic data.®

Following Locke and Blomquist (2016), we conduct a visibility analysis of the
wireless towers located in the study area. We do so using Viewshed’ and a 30-m
resolution digital elevation map of Mobile County, Alabama.® Following Paterson and
Boyle (2002), we calculate the visibility for a 360° circle and 1-km radius, including the
aboveground tower height, and assume that the average height of an observer’s eyes is
1.75 m above the ground at each property’s location. Figure 1, Panel A illustrates the
spatial distribution of towers, and Fig. 1, Panel B illustrates the Mobile County,
Alabama property locations.

At a larger scale, Fig. 2 shows the visibility of towers and properties located in the
most urbanized portion of the Mobile County, Alabama.’ Fig. 2 helps to clarify
graphically the idea of the indirect effect of a wireless tower. For example, although
some properties liec immediately outside of the border of the visibility range (indicated in
the red area), they are contiguous to properties that lie within the border of the visibility
range. If there are spatial correlations between property values and tower locations, then
we argue that a tower affects both the value of the property location from which the
tower is visible, and indirectly, the values of neighboring properties from which the
tower is not visible. Additionally, towers that are farther away, but that are still visible
from a property, may potentially influence a property’s value through a sort of spillover
effect carried over across neighboring properties within the tower visibility space.

We compute the minimum distance from each housing unit to the closest wireless
tower using the Haversine distance formula, which takes into account the curvature of
the Earth. We calculate the distance of housing unit 7 to the closest wireless tower ; as:

4 Sold properties data draw from the Gulf Coast Multiple Listing Service, Inc., a wholly owned subsidiary of
the Mobile Area Association of Realtors, Inc.

% These data draw from the U.S. Federal Communication Commission’s Antenna Structure Registration
database, available at http://wireless.fcc.gov/antenna/index.htm?job=home.

© These data draw from the U.S. Census Bureau, available at http://www.census.gov.

7 The Viewshed tool is available as part ESRI ArcGIS® software package.

8 Digital elevation maps draw from publicly available information hosted by the Geospatial Data Gateway of
the U.S. Department of Agriculture’s Natural Resources Conservation Service.

® An anonymous referee observed that every property within a 1 km radius of a tower is also within the
towers” viewshed. We believe that this unusual result is consistent with the average height of a wireless tower
in our dataset of approximately 60 m, and, more importantly, with the fact that our property sales data draw
from a fairly flat coastal geographical area (i.e., the average housing elevation of our sample =~ 11 m above sea
level).
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Fig. 1 Visibility Analysis: smaller scale

dj = min{Zr arcsin [ (haversine (wjﬂpi) + cos(p;)cos <<pj) haversine()\j_Ai) 045} }
(1)

where r is equal to the Earth’s radius of 6371 km, ¢ and ) are latitudes and longitudes
of property and wireless tower locations expressed in radians. The average minimum
distance of a property to a tower is 2.98 km, and we expect a negligible price impact for
properties located farther away from a tower than this average. To investigate further
the impact of towers on those dwellings that are closer, we conduct a sensitivity
analysis using four subsamples based on quartiles of the minimum distance to the
closest tower. The first, second, third, and fourth subsamples include houses within
radii bands of between 0 to 0.72 km, 0.72 km to 1.13 km, 1.13 km to 1.88 km, and
1.88 km to 41 km of the closest tower, respectively. Table 1 lists and defines all of the
variables we use in our analysis and summarizes the statistics for the whole sample of
23,309 properties. Table 2 presents the descriptive statistics of the variables across all
four subsamples.

Methodology

Consistent with the literature, we use an hedonic model to investigate the relationship
between property value and wireless tower proximity. Rosen (1974) was the first
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Fig. 2 Visibility Analysis: larger scale

researcher to derive a relationship between the price of a good and its characteristics.
His work is widely used in real estate and urban economics research as an indirect
method of revealing preferences used to analyze environmental externalities. As such,
we assume that the property price is a function of the intrinsic characteristics of the
property, neighborhood qualities, demographic characteristics, distance to wireless
towers, and a spatial process (essentially, the spatial relationship between objects).
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Table 1 Summary Statistics

Variable Definition Full Sample

Mean SD
Price inflation adjusted property sales price 167,592.3 124,777.1
Distance distance between the property and the tower 2.980 5.453
D* 1 if property sale occurs after tower construction 16,393 69.742
\% 1 if the tower is visible 9448 74.956
h_tower height of the tower 59.148 21.050
Age age of property in years 23.566 19.389
Bedrooms number of bedrooms in a property 3.285 .675
Bathrooms total number of bathrooms in a property 2.135 671
Onestory* 1 if number of stories is 1 1860 41371
Twostories™* 1 if number of stories is 2 2275 45.310
Car shelter* 1 if a property has a car shelter 15,023 73.078
Fireplace* 1 if a property has a fireplace 15,080 72.965
Fence* 1 if exterior has a fence 9375 74.862
Deck* 1 if exterior has a deck 5377 64.317
Pool* 1 if exterior has a pool 189 13.692
Brick* 1 if construction is primarily brick 16,500 69.426
Rural* 1 if population is less than 2500 per census tract 2644 48.416
distCBD distance to downtown Mobile in kilometers 17.957 8.695
Towers number of wireless towers per census tract 4.305 5.709
Income median income per census tract 66,768.36 20,299.91
Black African-American population per census tract expressed in units 1070.72 812315
Unemployment unemployment rate per census tract expressed in percentage points 9.207 5.417
N number of observations 23,309

The table above presents the summary statistics for the variables included in the entire dataset; year and zip
code dummies are not shown;

*binary variables (assumed to follow the binomial distribution): means and standard deviations for these
variables are computed for the binomial distribution

Hence, the econometric model used to examine the potential external impact of a

wireless tower on property price takes the following form:

In(Price), = By + B,In(Distance;) + B,D + (3D-In(Distance;) + 34V + [5V-In(Distance;)+
Beh_tower; + 3,V-h_tower; + sAge; + [oBedrooms; + 3,o(Bedrooms;)*+
B11Bathrooms; + (3,,0nestory; + 3,3 Twostories; + (34,Carshelter; + 3,sFireplace;,+
BeFence; + B7Deck; + BgPool; + [319Brick; + BygRural; + 3,,distCBD; + (3,, Towers;+
BasIn(Income;) + Baogln(Black;) + B,sUnemployment; + Y2053 o7, Year,+

251:15 jZipcode;; + €;

(2)

where In(Price) is the natural log of the property sales price; In(Distance) is the
natural log of the distance between a property and a wireless tower measured in
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Table 2 Summary Statistics for Variables in Each of the Four Subsamples

Sample 1? Sample 2° Sample 3¢ Sample 4¢

(0.00-0.72Km) (0.72Km — 1.13Km) ~ (1.13Km — 1.88Km)  (1.88Km — 41Km)

Mean SD Mean SD Mean SD Mean SD
Price 163,008.8 107,361.6 170,634.6  133,366.5 170,212.1 136,985.5  166,518.6  119,035.9
Distance 0.497 0.156 0.920 0.116 1.425 0.202 9.080 8.295
D* 4087 34.942 4256 33.874 4246 33.942 3804 36.341
\%& 5759 8.257 3667 36.869 22 4.682 0 0
h_tower 53.920 20.199 53.436 19.845 56.434 19.090 72.803 18.778
Age 26.148 21.949 25455 20.128 23.876 18.816 18.784 15.158
Bedrooms 3.269 0.629 3.322 0.634 3.312 0.735 3.238 0.695
Bathrooms 2.113 0.667 2.156 0.710 2.167 0.700 2.104 0.598
Onestory* 459 20.563 499 21.360 528 21912 374 18.708
Twostories™* 573 22.730 615 23.454 642 23.901 445 20.274
Car shelter* 3832 36.227 3858 36.106 3695 36.769 3638 36.968
Fireplace* 3806 36.338 4028 35.265 3910 35.866 3336 37.764
Fence* 2521 37.822 2576 37.910 2380 37.522 1898 35.774
Deck* 1222 31.077 1404 32.645 1369 32.363 1382 32.469
Pool* 51 7.110 44 6.608 47 6.828 47 6.828
Brick* 3856 36.121 4142 34.608 4179 34.379 4323 33.404
Rural* 787 26.091 601 23.217 460 20.584 796 26.216
distCBD 14.625 5.891 15.037 5.601 16.037 5.524 26.131 10.758
Towers 5.523 5.743 5.152 6.474 4.671 6.242 1.875 2.881
Income 68,790.18  23,488.16 69,418.33  22,687.17 67,058.06 20,669.78  61,806.5 10,912.01
Black 1214973  910.131 1139.579 801.164 1217.888 835.001 710.429 543.371
Unemployment  9.408 6.073 8.900 5.640 8.827 5.130 9.692 4.678
N 5828 5827 5827 5827

The table above presents the summary statistics for the variables within each of the four subsamples included
in the analysis;

*binary variables (assumed to follow the binomial distribution): means and standard deviations for these
variables are computed for the binomial distribution

@ Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius < 0.72Km);

® Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km < distance < 1.13Km);

¢ Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest wireless
tower (1.13Km < distance < 1.88Km);

4 Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km < distance < 41Km)

kilometers; D is a dummy variable that takes the value of one if the property was
purchased after tower construction, and zero otherwise; Vis a dummy variable that
takes the value of one if the closest tower is visible from the property, and zero
otherwise; h_tower is a continuous variable that measures the height of the closest
tower above the ground in meters; Age is the age of a property in years; Bedrooms
is the total number of bedrooms in a property; Bathrooms is the total number of
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bathrooms and/or half-bathrooms in a property; Onestory and Twostories are
binary variables equal to one if the property has one story or two stories above
the ground level, respectively; Carshelter, Fireplace, Fence, Deck, Pool and Brick
are dummy variables that take the value of one if a property has a car shelter, a
fireplace, a fence around the house, a deck, a pool and/or the exterior construction
is made of bricks respectively, and zero otherwise; Rural is a binary variable
proxy for less dense populated areas that takes value one if the number of
inhabitants per census tract is less than 2500, and zero otherwise; distCBD is a
continuous variable that measures the distance of each property from the Central
Business District of Mobile, Alabama, the largest city in the study area; Towers is
the number of wireless towers per census tract; In(Income) is the natural log of the
median income per census tract; In(Black) is the natural log of the African-
American population expressed in units per census tract; and, Unemployment is
the unemployment rate per census tract expressed in percentage points. As in
Jensen et al. (2014), we add the interaction between distance to (dis)amenities and
tower visibility (V), which we label In(Distance)-V. We use Year, property sale
year dummy variables, to control for the impact of the subprime mortgage crisis.
Finally, following Caudill et al. (2014), we include Zipcode, a set of dummy
variables that attempt to capture additional unobserved neighborhood heterogeneities at
a higher resolution than the census tract. Since we are interested in examining the price
sensitivity of buyers of homes closest to a wireless tower, we follow Locke and
Blomquist (2016) in stating the dependent variable being in logarithmic form. However,
we also use the Akaike Information Criterion (AIC) to test several functional
forms for hedonic price equations by varying the specification of the variables in
the right-hand side of Eq. (2). We do so because by selecting the functional form
having the lowest AIC value, we are able to produce a theoretical specification
with the least possible information loss.

We calculate the average impact of a wireless tower on housing price by subtracting
expected housing values before tower construction from expected housing values after
tower construction, using the equation taking the following form:

E leL" (1) D=1|-E|" () D= o] . (3)

We also calculate the total social welfare impact as:

AW =YV Ke“' (pﬁe)iwi = 1) - (J" (pge),u),- - 0)1 . (4)

In addition, to examine the spatial price sensitivity of home buyers—the price
elasticity of tower proximity—we partially differentiate Eq. (2) with respect to
In(Distance), using the equation taking the following form:

0Oln(Price)

Sin(Distance) 01+ 5D+ BsVI%. 5)
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We evaluate Eq. (5) as D = 0 and V = 0 (/3;) for sales occurring before tower
construction, and D= [ and V= 1 (3; + B3 + (3s) for sales occurring after the visible
tower construction. We additionally include D = [/ and V = 0 (5; + (33), which
accommodates comparison of price sensitivity of buyers of properties from which the
closest tower is not visible.

In certain hedonic studies, it is appropriate to perform statistical tests for spatial
correlation. This is a consequence of Tobler’s first law of geography, which premises the
interrelationship of all things, but that closer things are more related than distant things
(Tobler 1970). We use spatial correlation tests to account for spatial processes in the
dependent variable and estimation residuals. In matrix notation, such a model reads as:

y = pWy + XB + (I-AW) 'u (6)

where y is a n X 1 vector of property prices (previously defined); p is a scalar coefficient
of spatial correlation; W is an n X n row, standardized spatial contiguity matrix based on
the three closest neighbors as outlined by Caudill et al. (2014); X is ann x 63 (number of
parameters of Eq. 1 including intercept) data matrix with first column vector 1,; 3 is a
63 x 1 vector of parameters; I is an n x n identity matrix, A is a scalar coefficient of
residuals spatial correlation; and, u is an n x 1 vector of Gaussian innovations.

We estimate the spatial model by maximizing the log-likelihood function (MLL)
with respect to the model’s parameters, coefficients of spatial correlation (p and \), and
residual standard errors (o) using the equation taking the following form:

LL(B, p, A, oly) = 0.5 n In(m)~0.5 n In(0?)
+ (In[I-AW| + In|T-pW|)-[0.5(07%) (u’) (u)] (7)

where 7 is the sample size, u = (I - AW) (I - PW)y - (I - AW) X; and, In| I - AW|
and In|I - pW]| are the terms of the log-Jacobian transformation of u into y. Assuming
the same geographic processes for the dependent variable and residuals (same W), the
large sample Moran’s / test for spatial correlation of the residuals is:

Z; = [I=E(1)]/Var(1)"*~N(0, 1) (8)

where [ is calculated from the residuals of Eq. (2) as €’We/ €’¢. Since this test is
asymptotically normal, if Z; > 1.96, with 95% confidence, we reject the null hypothesis
that there is no spatial autocorrelation of the residuals.

The econometric models presented in Egs. (6) and (7) are generic representations of
a spatial model which includes both a spatial autoregressive model—model with
dependent variable spatially autocorrelated: A = 0, and a spatial error model—model
with residuals spatially autocorrelated: p = 0. Following Anselin (1988), in practice, we
select only one of the two models. Following the suggestion of Anselin et al. (1996),
we use Robust Lagrangian Multiplier (RLM) tests (Hy: no spatial autocorrelation) of
the residuals, using equations taking the following forms:

RLM, = [.s’Wy/ozﬂs’Ws/oﬂ2/{02 [(WXB)M(WXB) +no’|-n}  (9)
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RLM, = [s’Ws/azfn(az [(WXB)’M(WXB) + nolbilsﬂwy/azr (10)
o[ ren(? ooy maove o e

Both Egs. (9) and (10) follow the X2 distribution with one degree of freedom and
include M = I-X(X’X) "X as an idempotent projection matrix. Following Florax and
De Graaff (2004), we select the model with the largest RLM statistics.

Results and Discussion

In this study, we conduct a pseudo-quantile analysis based on quartiles of the
distance of each property from the closest tower. We refer to it as a pseudo-
quantile analysis because we force the estimation of the conditional mean of the
response variable on different values of the distance to the closest tower by
subsampling the full data set for the four quartiles of this variable. The idea is
to test our research hypothesis for properties located within different distance
gradients from wireless towers. We do so by creating four spatial contiguity
matrices (one for each sample). In Table 3, we report the results of both the
Moran’s / and RLM tests for spatial correlation across all four samples.

Table 3 Tests for Spatial Correlation

Sample 1° Sample 2° Sample 3¢ Sample 4¢
(0.00-0.72Km) (0.72Km — 1.13Km) (1.13Km — 1.88Km) (1.88Km — 41Km)
Statistic Value Value Value Value
Moran’s 1 0.22 0.21 0.20 0.18
Z; 26.43%%% 24 81%#%* 24 52%#%% 21.53%#%%
(0.00) (0.00) (0.00) (0.00)
RLM, 436.83%** 438.42%%* 490.10%** 365.60%*%*
(0.00) (0.00) (0.00) (0.00)
RLM,, 0.041 0.24 0.31 0.49
(0.84) (0.62) (0.58) (0.48)

The table above presents the results of spatial correlation tests for all three samples;

Hj No Spatial Autocorrelation, Z; follows the standard normal distribution, RLM ,and RLM,, follow the Xz
distribution with one degree of freedom

Confidence intervals presented as ***99%; p-values in parentheses;

* Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius < 0.72Km);

® Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km < distance < 1.13Km);

¢ Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest wireless
tower (1.13Km < distance < 1.88Km);

d Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km < distance < 41Km)
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Based on the Moran’s / test results, with 99% confidence for each sample, we reject
the null hypothesis that there is no spatial correlation of the residuals. Based on the
results of the RLM test for dependent variable spatial correlation, we reject the null
hypothesis of no spatial correlation for each subsample with 99% confidence. In
contrast, based on the results of the RLM test for residual spatial correlation, we fail
to reject the null hypothesis of no spatial correlation across all subsamples. Conse-
quently, the spatial autoregressive model is the most appropriate econometric tool to
conduct our analysis (Florax and De Graaff 2004). In Tables 4 and 5, we report the
results of our analysis, comparing the OLS estimates (Table 4) of Eq. (2) to the MLL
estimates (Table 5) of Eq. (6) with A restricted to zero as a natural consequence of the
Moran’s / and RLM diagnostic tests discussed above.

Although biased, OLS estimates have good explanatory power across all four
samples (the coefficient of determination ranges from 60% to 72%). However, com-
parison of the lower values of the AIC of the spatial autoregressive models to the
corresponding OLS models confirms the hypothesis that the spatial autoregressive
models represent the reality with minimum information loss. Therefore, this additional
information supports our contention that the spatial autoregressive model is the most
appropriate framework for statistical inference in our study.

In general, the spatial autoregressive model estimates have good statistical power and
the expected coefficient signs across the four subsamples. Curiously, though, we find
that the prices of properties purchased in 2009 after the U.S. financial crisis (compared to
the baseline year 2007) are not statistically significant within 1.88 km from the closest
tower (across the first three quartiles of the distance to the closest wireless tower). On the
other hand, although the coefficients for dwelling age, unemployment rate, and the
percentage increase in the African American population per census tract are all statis-
tically significant, none seems to be economically significant in Mobile County. As
expected, the numbers of bedrooms and bathrooms, as well as income are important
predictors of property value in terms of economic magnitude. However, as in Locke and
Blomquist (2016), it appears that the impact of these variables is relative to property
location with respect to the towers. For example, an average household would be willing
to pay between 7% to 8.5%'® more than the average price of a property for an additional
bedroom across the four samples while the household’s willingness to pay for an
additional bathroom ranges between 21% to 27% more than the average across the four
subsamples. Moreover, commensurate with a 10% increase in median income per
census tract, the property price increases range from between 18% to 21% for those
properties located beyond 1.88 km from the closest tower (across Samples 2—4).
However, it seems that the price of properties located within 0.72 km from the closest
tower (Sample 1) is only negligibly sensitive to median income changes.

Turning our analysis to the impact of the wireless tower on the value of residential
properties, our first assessment of the spatial autoregressive model estimate of D for the
properties located within 0.72 km from the closest tower (Sample 1) shows a statistically

10 There is a quadratic relationship between the logarithm of the property price and the number of bedrooms.
We evaluate the semi-elasticities at the mean values of the number of bedrooms as reported in Table 2.
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Table 4 Ordinary Least Squares

Sample 1°
(0.00-0.72Km)

Sample 2°
(0.72Km — 1.13Km)

Sample 3¢
(1.13Km — 1.88Km)

Sample 4¢
(1.88Km — 41Km)

Constant
Age

Bedrooms
Bedrooms?
Bathrooms

Onestory
(0/1)

Twostories
(0/1)

Car shelter
(0/1)

Fireplace
(0/1)

Fence (0/1)
Deck (0/1)
Pool (0/1)
Brick (0/1)
Rural (0/1)
In(distCBD)
Towers
In(Income)
In(Black)
Unemployment
Year 2008
Year 2009
Year 2010
Year 2011
Year 2012
Year 2013

In(Distance)

D
In(Distance) D
v
In(Distance)-V
H_tower

H tower'V
Adj. R?

9.872%%* (16.26)
-0.004%** (—12.86)

0.365%* (7.14)
-0.043%** (=5.75)
0.329%++ (31.83)
0.031* (1.65)

0.058*#%* (3.28)

0.179%#%* (17.32)

0.203%** (17.87)

0.067*** (6.33)
0.0927#** (7.03)
0.067 (1.36)
0.118%** (10.6)
-0.065%** (=3.07)
-0.287*%** (—10.06)
0.003%** (2.74)
0.155%%%* (5.58)
-0.066%** (—6.66)
-0.011%%% (=7.44)
0.075%** (3.95)
0.009 (0.45)
-0.116%#* (=5.02)
-0.288*** (—12.54)
-0.346%** (—15.52)
-0.321%%* (—14.58)

-1.257%%% (~2.95)
-0.191%%% (—4.82)
0.51%%* (5.41)
-0.234 (-0.67)
0.829%* (1.97)
0.007 (1.43)
-0.006 (—1.14)
0.715

6.362%%%* (12.2)
-0.006%** (—16.64)

0.417%%* (9.76)
-0.041%%* (=6.99)
0.277%%* (30.66)
0.06%** (3.34)

0.112%%* (6.49)

0.187%%* (17.77)

0.184%** (15.52)

0.019% (1.73)
0.065%+% (5.02)
-0.004 (~0.08)
0.098*% (8.48)
0.119%#% (~4.93)
0,103 (—3.44)
0.003%+* (3.63)
0.379%++ (14.38)
0.091%%% (~9.41)
-0.004%+% (—2.68)
0.129%#% (6.84)
0.011 (0.54)
0,087 (<3.57)
0.297%%% (~13.56)
-0.304%%% (~13.11)
0.331%%% (~14.89)

0.343 (1.41)
20.011 (-0.1)
0.048 (0.28)
0.123 (0.74)
-0.241 (-0.99)
0.001 (0.62)
0.001%% (2.37)
0.722

6.009%** (15.53)
-0.007#*%* (—18.07)

0.074*** (6.15)
-0.002%** (—4.03)
0.373%%%* (37.72)
0.069*** (3.89)

0.092#%%* (5.4)

0.189%#* (18.89)

0.158%*%* (13.74)

0.024%%% (2.26)
0.075%#% (5.96)
-0.026 (-0.51)
0.125%*% (11.1)
0.066%* (-2.25)
-0.163%%% (~4.67)
0.001 (0.49)
0.478%*% (16.27)
-0.065%% (=6.64)
0.009%%% (5.27)
0.111%#% (5.8)
0.036 (1.69)
-0.118%#% (=5.29)
-0.235%%% (~10.48)
0.26%% (=11.13)
-0.307+%* (~13.93)

0.055 (0.49)
0.005 (0.05)
0.009 (0.07)
4314 (-0.54)
5.59 (0.6)
0.001 (1.62)
-0.006 (=0.75)
0.714

6.311%** (11.59)

-0.008%
-21.77)

0.115%%% (9.07)
0.003%#% (=5.87)
0.278%+% (26.44)
0.17%%% (8.14)

0.191#+* (9.50)
0.239%#% (23.03)
0.179%#+ (17.01)

0.036%++ (3.23)
0.093%%% (7.15)
0.118%* (2.20)
0.096%+* (7.56)
0.216888 (5.35)
20.075 (-1.33)
20.002 (-0.75)
0.388%++ (8.001)
-0.023%% (-2.38)
0.003%++ (1.91)
0.100%#% (5.26)
0.019 (0.9)
20,062 (=3.02)
0.185%#% (~8.4)
021 (=9.73)

202495
(-11.76)

0.107#*%* (3.67)
0.044 (1.200)
-0.031* (-1.72)
NA®

NA®

0.001%** (3.06)
NA®

0.605
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Table 4 (continued)

Sample 1* Sample 2° Sample 3¢ Sample 4¢
(0.00-0.72Km) (0.72Km — 1.13Km)  (1.13Km — 1.88Km) (1.88Km — 41Km)
AIC 4257 4308 4157 4685
Deg. of Freedom 5773 5774 5774 5773
Sample Size 5828 5827 5827 5827

The table above presents results of the Ordinary Least Square estimates

Zipcode parameter estimates are not reported to save space (available upon request). Ten, twelve, twelve and
eight Zipcode dummy variables were dropped from the analysis of Samples 1, 2, 3 and 4, respectively, because
there were not properties within these zipcode areas

Confidence intervals presented as ***99%, *#95%, and *90%; t-values in parentheses;

@ Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius < 0.72Km);

® Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km < distance < 1.13Km);

¢ Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest wireless
tower (1.13Km < distance < 1.88Km);

4 Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km < distance < 41Km);

¢ Visibility variable was dropped from the analysis because there were not visible towers in Sample 4

significant, negative correlation between property price and sales occurring after tower
construction. The same estimate is statistically equally to zero for those properties
located within 0.72 and 1.88 km from the closest tower (Samples 2 and 3). For properties
that are far from the visibility range of a tower (Sample 4 includes properties located
beyond 1.88 km), the correlation between property price and tower becomes positive
and statistically different from zero. V, the visibility of the tower, is not statistically
significant across the four samples. However, In(Distance)-V is statistically significant at
the 5% alpha level for properties that are located within 0.72 km from the closest tower
(Sample 1). For these properties, we perform a log-likelihood ratio test for the joint
significance of V, In(Distance)-Vand h_tower-V, following the x? distribution with three
degrees of freedom equal to the number of restrictions (three estimates simultaneously
equal to zero). We reject the null hypothesis that these three estimates are jointly equal to
zero (p-value =0.071, 90% confidence). Hence, we must include these parameters to
model the relationship between housing price and tower proximity for those properties
that are closer to the wireless tower (Sample 1). However, the opposite is true for
properties located beyond 0.72 km as we fail to reject the null hypothesis when applying
the same test to these properties. In addition, the number of wireless towers per census
tract (Towers) and tower height (4_tower) have no significant impact on housing price
across the four samples (statistically and economically).

To assess the average social welfare impact of wireless tower proximity on residen-
tial property values, we estimate the predicted housing value from sales occurring
before and after tower construction using Eq. (3). In Table 6, we report the predicted
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Table 5 Spatial Autoregressive Models

Sample 1°
(0.03Km — 0.72Km)

Sample 2°
(0.72Km — 1.13Km)

Sample 3¢
(1.13Km — 1.88Km)

Sample 4¢
(1.88Km — 41Km)

Constant
Age

Bedrooms
Bedrooms®
Bathrooms

Onestory
(0/1)

Twostories
(0/1)

Car shelter
(0/1)

Fireplace (0/1)
Fence (0/1)
Deck (0/1)
Pool (0/1)
Brick (0/1)
Rural (0/1)
In(distCBD)
Towers
In(Income)
In(Black)
Unemployment
Year 2008
Year 2009
Year 2010
Year 2011
Year 2012

Year 2013

In(Distance)
D
In(Distance) D
v
In(Distance)-V
H_tower

H tower'V

P

6.404%%* (11.417)
-0.004%** (—11.15)

0.358 ##% (7.728)
-0.044 ##% (—6.522)
0.256%%% (26.873)
0.019 (1.111)

0.043%#* (2.673)

0.129%#%* (13.573)

0.142%%% (13.643)
0.067+%* (6.958)
0.08%++ (6.74)

0.04 (0.898)
0.078%+* (7.743)
-0.015 (-0.791)
0.218%#% (-8.416)
0.002%% (2.666)
0.09%+* (3.557)
~0.04%%% (—4.359)
0.007#4% (=5.249)
0.078%++ (4.552)
0.015 (0.843)
0.117%%% (~5.581)
-0.300%%* (~14.474)
-0.340%%* (~16.871)

-0.328%*** (—16.461)

1167 (=3.025)
0.12#%% (=3.35)
0332+ (3.886)
-0.453 (-1.432)
0.872%* (2.291)
0.001 (0.151)
0.001 (0.02)
0.362%%% (31.59)

4.315%*%* (8.984)
-0.005%** (—14.236)

0.353%%% (9.063)
-0.036%** (—6.755)
0.216%++ (25.703)
0.039%* (2.38)

0.077%%* (4.884)

0.136%** (14.052)

0.134%++ (12.346)
0.026%++ (2.621)
0.059%%+ (5.035)
0.039 (0.807)
0.076*** (7.249)
-0.064%%* (=2.908)
-0.089%** (~3.274)
0.002%* (2.157)
0.207+%+ (8.428)
-0.059%%% (~6.655)
-0.003%* (~2.204)
0.128%** (7.504)
0.007 (0.374)
-0.095%%% (—4.276)
-0.304%%% (~15.253)
-0.306%** (~14.514)

-0.331%%* (—16.388)

0274 (1.232)
-0.007 (~0.066)
0.043 (0.27)
0.118 (0.782)
-0.193 (-0.869)
0.001 (0.436)
0.001 (1.394)
0.349%% (30.53)

4.109%** (11.697)
-0.005%** (—14.209)

0.068*** (6.221)
-0.002*%** (—4.0606)
0.279%%* (29.698)
0.0427%%* (2.591)

0.063*** (4.125)

0.142%%% (15.426)

0.117##% (11.156)
0.04%%% (4.164)
0.081%%% (7.096)
0.003 (0.071)
0.101%%* (9.888)
-0.042 (-1.598)
-0.108*#% (-3.421)
0.001 (0.313)
0.274%#% (10.083)
-0.041%%% (~4.66)
0.006%++ (3.715)
0.114%%% (6.589)
0.031 (1.615)
-0.12%%% (=5.934)
-0.236%*% (~11.639)
-0.296%%* (~13.986)

-0.322%%* (=16.132)

0.059 (0.593)
0.003 (0.031)
0.007 (0.062)
2,747 (~0.377)
3.533 (0.421)
0.001 (1.414)
-0.003 (—0.451)
0.352%%% (32.61)

5.304*#%* (10.467)

-0.007%x
(—19.002)

0104+ (8.902)
-0.003%+* (—5.887)
0.241%4% (24.491)
0.133%%* (6.847)

0.155%+* (8.296)
0.191%%+ (19.629)

0.1527%%* (15.428)
0.048*** (4.579)
0.084*** (6.965)
0.089** (1.786)
0.085%** (7.262)
0.153%#* (4.063)
-0.084 (—1.612)
-0.001 (—0.583)
0.179%*%* (3.908)
-0.02%* (=2.165)
0.001 (0.779)
0.108%#* (6.124)
0.024** (1.209)
-0.071%%* (=3.714)
-0.189%#% (=9.255)

-0.228%%
(—11.364)

0257
(-13.074)

0.09%+ (3.318)
0.06% (1.773)
0.039%* (—2.298)
NA®

NA®

0.001%* (1.934)
NA®

0.310%%% (26.89)
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Table 5 (continued)

Sample 1* Sample 2° Sample 3¢ Sample 4¢
(0.03Km — 0.72Km) (0.72Km — 1.13Km) (1.13Km — 1.88Km) (1.88Km — 41Km)

o 0.314%%* (33.137)  0.317*%* (32.781)  0.311*** (33.286) 0.334%** (31.215)
AIC 3347 3457 3243 4022
Deg. of Freedom 5571 5572 5572 5571
Sample Size 5828 5827 5827 5827

The table above presents results of the maximum log-likelihood estimations of the spatial autoregressive
models

Zipcode parameter estimates are not reported to save space (available upon request). Ten, twelve, twelve and
eight Zipcode dummy variables were dropped from the analysis of Samples 1, 2, 3 and 4, respectively, because
there were not properties within these zipcode areas

Confidence intervals presented as ***99%, **95%, and *90%; z-values in parentheses;

@ Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius < 0.72Km);

® Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km < distance < 1.13Km);

¢ Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest wireless
tower (1.13Km < distance < 1.88Km);

4 Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km < distance < 41Km);

¢ Visibility variable was dropped from the analysis because there were not visible towers in Sample 4

sales value and t-test results of the sale price means for home sales occurring before and
after tower construction.

For properties located within a 0.72-km radius of a wireless tower that are sold after
tower construction (Sample 1), it appears there is indeed a tower-related negative price
effect. We estimate the social cost tower impact as approximately $4132 (p-value
=0.014), which corresponds to a 2.65% decrease in property value. As expected, tower
impacts are negligible for the stratum of housing units located beyond 0.72 km. Along
the same line, we compute the impact of tower visibility for properties sold after tower
construction as E(exp(XB|D = 1;V = 1)) - E(exp(XB|D = 1;V = 0)). Our calculations,
summarized in Table 7, indicate a tower visible to properties within 0.72 km would
effectively depreciate property values an average of 9.78%, equating to an average
monetary loss of $17,037 (p-value =0.00). The impact of tower visibility would be
statistically equal to zero for those properties beyond the 0.72 km band. In addition, we
use Eq. (4) to gauge the overall social welfare resulting from wireless towers. Com-
puting the sum of the difference between the predicted housing price before and after
tower construction across the sample, we find a staggering aggregate value loss of
$24.08"" million dollars.

! This figure was calculated using equation (4). Let 3, be a column vector (5828 x 1) of predicted housing
prices obtained by evaluating exp(Xf) at the average values of all of the price predictors with D = 1 (sold after
tower construction) and y,, the predicted housing prices counterpart with D = 0 (sold before tower construc-
tion). We define the change in welfare of each household i within Sample 1, as the element-by-element
subtraction AW; = 3|, - ¥, Finally, the aggregate welfare impact was obtained by taking the sum of the

elements of the column vector AW, i.e., foleAW,- = —24,081,385.
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Table 6 Social Welfare Analysis of Wireless Tower Impact on Home Values

Expected Value

Before Tower After Tower Impact®
Sample 1° 155,911 151,779 -4132%*

(91,553) (89,964) (1681)
Sample 2° 161,865 164,068 2204

(131,195) (133,607) (2453)
Sample 34 162,249 163,485 1236

(113,627) (114,428) (2113)
Sample 4° 159,752 161,770 2107

(101,244) (103,532) (1897)

The table above presents the social welfare analysis of wireless tower impacts on home values

After tower = exp.(XP)|D = 1, Before tower = exp.(XB)|D = 0, Impact = exp.(XG|D = 1) - exp.(X3|D = 0)
*%95% confidence interval; standard deviation in parentheses;

#standard error t-test in parentheses; t-test Hy: Efexp(X3|D = 1)] = E[exp(XBD = 0)];

® Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius < 0.72Km — sample size =5828);

¢ Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km < distance < 1.13Km — sample size =5827);

4 Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest
wireless tower (1.13Km < distance < 1.88Km — sample size =5827);

¢ Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km < distance < 41Km — sample size =5827)

Because we find no evidence that towers impact prices of properties located beyond
0.72 km of a tower, we focus our analysis on the price sensitivity of homebuyers of
properties located within 0.72 km of a tower. Earlier, we mention one of the main
strengths of a spatial econometric analysis is it enables disentanglement of the direct
and indirect effects of tower proximity on property values. This is because of a spatially
correlated dependent variable—that the change in price of house i with respect to the
distance to the closest tower of the neighbor’s house j within the same sample is not
zero (i.e. Oln(Price),/OIn(Distance); # 0 with i # j).

LeSage and Pace (2009) derive:

Average Direct Impact = n ' tr [(I—pW)fll ﬁk]
Average Indirect Impact = n' {1;1 [(I—pW)fllﬂk} L,—tr [(I—pW)fllﬂk} }
Average Total Impact = n’! lln {(I—pW)fllﬁk} 1,

(11)
for each predictor (5, with £ = 1,2,.K. Therefore, we use Eq. (11) to decompose and

calculate the average total impact of the wireless tower on property values within
Sample 1 as reported in Table 8.
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Table 7 Social Welfare Analysis of Wireless Tower Visibility on Home Values

Expected Value

Non-visible Tower Visible Tower Impact®
Sample 1° 174,194 157,157 -17,037 s

(104,007) (92,447) (1823)
Sample 2° 161,120 164,370 3251

(132,276) (133,740) (2464)
Sample 3¢ 163,113 163,335 222

(114,055) (114,297) (2115)
Sample 4° 157,454 NA' NAS

(99,875) (NA) (NA)

The table above presents the social welfare analysis of the visibility impact of wireless tower on home values
(after tower construction — D = 1)

Visible tower = exp.(XB|D = 1;V = 1), Non-visible tower = exp.(Xp|D = 1,V = 0), Im-
pact=exp.(XOD=1,V=1) - exp.(XBID = 1,V = 0);

Confidence intervals presented as ***99%; standard deviation in parentheses;

#standard error t-test in parentheses; t-test Hy: Efexp(X3|D = 1,V = 1)] = E[exp(X3|D = 1,V = 0)];

® Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius < 0.72Km — sample size =5828);

¢ Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km < distance < 1.13Km — sample size =5827);

4 Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest
wireless tower (1.13Km < distance < 1.88Km — sample size =5827);

¢ Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km < distance < 41Km — sample size =5827);

fVisibility variable was dropped from the analysis because there were not visible towers in Sample 4

We then use Eq. (5) to assess the price sensitivity of buyers with respect to the
distance to the closest visible and non-visible towers after their construction. It appears
that if the tower is not visible, the property price decreases 8.7% for every 10% increase
in distance to the closest tower. The spillover effect on property price due to the
depreciation of the neighbor’s property—the average indirect effect—is 4.41% of price
decrease for every 10% increase in the distance to the closest tower. The total

Table 8 Decomposition of the Price Sensitivity of Home Buyers to Tower Proximity

Average Direct Impact Average Indirect Impact Average Total Impact
In(Distance) -1.213 -0.616 -1.828
In(Distance)-D 0.345 0.175 0.520
In(Distance)'V 0.906 0.460 1.367

The table above presents the results of the sensitivity analysis designed to compare the price sensitivity of
buyers of properties from which the closest tower is not visible

Average Direct Impact = 0ln(Price);/0ln(Distance);, Average Indirect Impact = on(Price)/0ln(Distance); with
i #J, Average Total Impact = Average Direct Impact + Average Indirect Impact
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depreciation is 13% for 10% increase in the distance. Therefore, it may well be that
non-visible towers are a potential external benefit for properties located within 0.72 km
of a tower. Although we cannot affirmatively explain this finding, our sense is it may be
due to enhanced wireless coverage resulting in a stronger wireless signal.

It is noteworthy that only 69 of 5828 properties within 0.72 km of the closest tower
are outside of the visibility range of a tower. In contrast, however, the 5759 homebuyers
purchasing properties within 0.72 km of the closest tower that are within visible range
of a tower are not particularly sensitive, on average, to the distance to the visible tower,
despite their perceptions of a visible tower as a negative externality. In fact, housing
prices appreciate approximately 0.4% for each 10% increase in the distance to the
closest visible tower. The average indirect impact of towers on those buyers (price
spillover due to neighbor’s price movement) is approximately 0.2%. This is to say that
buyers of properties located an average of 0.497 km (average minimum distance in
Sample 1) to the closest tower are willing to pay a premium of approximately 0.6% of
the average housing price for every 10% increase in the average distance from a tower
(average total impact). Monetarily, this translates into a value of approximately $962
per 50 linear meters'? of increase in distance from the closest tower.

One limitation of our study is that we cannot control for potential endogeneity
associated with the sale date dummy variable (D). Even though homeowners could
choose to buy or not to buy a property after tower construction, we have no information
as to their motivations for buying. Ideally, a difference-in-differences study restricted to
repeat sales of the same property occurring pre- and post-tower construction could
potentially mitigate this source of bias. Unfortunately, within the entire sample of
23,309 housing sales there are only 42 repeat sales. A difference-in-differences ap-
proach based on a sample of 42 observations would clearly suffer from a
micronumerosity problem with negative degrees of freedom (the number of parameters
would exceed the sample size), and would, therefore, lack empirical viability.

Notwithstanding the slight potential for bias, our results are clear: consumers
perceive visible wireless towers as economic externalities. Aggregate social costs are
highly significant relative to those properties within a 0.72 Km radius of a tower.
Additionally, we must also point out that our study does not assess intangible social
benefits of wireless towers, such as high-speed internet access, emergency communi-
cations, and digital forensics enabling national security related wireless communication
monitoring, all of which provide invaluable services to consumers, businesses, and
institutions.

Conclusion

Truly, we currently live in the Age of Information. According to the International
Communication Union of the United Nations, the number of wireless phone subscrip-
tions totaled over 7 billion worldwide in 2015, with wireless coverage extending to
95% of the world’s population (United Nations, International Communication Union
2015). U.S. wireless usage is no less astounding, as evidenced by the 1045% increase in

12 We calculate a 10% increase in the average minimum distance for houses in Sample I as 0.49 km - 0.1 = 50 m.
A 0.59% increase in the average housing price of Sample 1 is $163,008.8 - 0.0059 ~ $ 961.80.
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wireless devise demand over the last 20 years (CTIA 2015). The future looks promising as
well, with expectations that U.S. wireless industry employment will increase more than
31% from 2012 to 2017 (Pearce et al. 2013). Yet, even with the wireless industry poised
for continued growth, it is unlikely it will be without consequences. Certainly, there are
private benefits associated with the use of wireless service, yet there are costs as well. In
this study, we examine one such cost: the impact of wireless towers on home values.

Although previous researchers have examined this issue, our study differs in two
aspects. First, we address the econometric problem of spatial dependence that typically
flaws hedonic price estimation analysis. We contend our empirical analyses are more
efficient than those used in other studies, and as result, our results reveal greater
consistency and reliability. Second, rather than rely solely on neighborhood-based
property sales data, we test our hypothesis using recent property sales and current
wireless tower locational data for an entire metropolitan statistical area,'® which also
happens to be one of the busiest port cities in the United States."*

The results of a series of spatial statistical tests developed by Anselin et al. (1996)
suggest that a spatial autoregressive model is the most appropriate econometric ap-
proach to test our research hypothesis. We conduct a marginal sensitivity analysis for
homes within different radii of distances to the closest visible and non-visible
wireless towers, basing the distance bands on quartiles of the distance to the
wireless tower. Our results reveal wireless tower capitalization only in the value
of those properties that are within approximately 0.72 km of a tower. On average,
the potential external cost of a wireless tower is approximately $4132 per resi-
dential property, which corresponds to a negative price effect of 2.65%. The
negative price impact of 9.78% is much more severe for properties within visible
range of a tower compared to those not within visible range of a tower. This
negative impact vanishes as radii distances exceed 0.72 km. In aggregate, the
social welfare cost for the properties in our sample located within 0.72 km
amounts to an approximate loss of $24.08 million dollars of value.

U.S. federal law prohibits wireless siting denial if no alternative site is available
(FCC 1996; Martin 1997). However, given the apparent social costs associated with
negative price effects, local zoning and regulatory authorities should consider granting
approvals that include impact-minimizing conditions. For example, wireless tower
construction approvals could require development and maintenance of visual or veg-
etative buffer screening. Concurrently or alternatively, approvals could mandate
camouflaging towers to look like trees or flagpoles. Other types of approval conditions
could dictate attachment of communication antennae systems to existing structures
such as buildings, street light poles, electric utility poles, water towers, billboards, or
even sports stadium super-structures. Clearly, society is dependent on wireless communi-
cation, and obfuscating efforts to expand or improve coverage makes little sense. Argu-
ably, however, authorities overseeing the process have definitive obligations, perhaps even
fiduciary ones, to safeguard the interests and well-being of those whom they serve.

13 The U.S. Census Bureau list of metropolitan statistical areas ranks Mobile County, Alabama at number 127.
Data available at http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml ?sre=bkmk.

!4 The Port of Mobile is home to the twelfth busiest port in the U.S., and ninth busiest port along the Gulf Coast,
ranked by cargo tonnage handled as reported by the U.S. Department of Transportation, available at http://www.
rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_57.html.
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